Global Policy Construction in Modular Reinforcement Learning

نویسندگان

  • Ruohan Zhang
  • Zhao Song
  • Dana H. Ballard
چکیده

We propose a modular reinforcement learning algorithm which decomposes a Markov decision process into independent modules. Each module is trained using Sarsa(λ). We introduce three algorithms for forming global policy from modules policies, and demonstrate our results using a 2D grid world.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Scalability Issues in Reinforcement Learning for Self-Reconfiguring Modular Robots

Self-reconfiguring modular robots have been receiving great attention because advances in our field are expected to deliver ultra-adaptable and robust systems. There has been remarkable progress in modular hardware and distributed controllers, e.g., [1]–[4], some of which were designed automatically by genetic algorithms, e.g., [1]. But how can the greatest adaptability be achieved? Our positio...

متن کامل

Optimizing Tutorial Planning in Educational Games: A Modular Reinforcement Learning Approach

Recent years have seen a growing interest in educational games, which integrate the engaging features of digital games with the personalized learning functionalities of intelligent tutoring systems. A key challenge in creating educational games, particularly those supported with interactive narrative, is devising narrativecentered tutorial planners, which dynamically adapt gameplay events to in...

متن کامل

Distributed reinforcement learning for self-reconfiguring modular robots

In this thesis, we study distributed reinforcement learning in the context of automating the design of decentralized control for groups of cooperating, coupled robots. Specifically, we develop a framework and algorithms for automatically generating distributed controllers for self-reconfiguring modular robots using reinforcement learning. The promise of self-reconfiguring modular robots is that...

متن کامل

Automated Design of Adaptive Controllers for Modular Robots using Reinforcement Learning

Designing distributed controllers for self-reconfiguring modular robots has been consistently challenging. We have developed a reinforcement learning approach which can be used both to automate controller design and to adapt robot behavior on-line. In this paper, we report on our study of reinforcement learning in the domain of self-reconfigurable modular robots: the underlying assumptions, the...

متن کامل

Multiple-Goal Reinforcement Learning with Modular Sarsa(O)

We present a new algorithm, GM-Sarsa(O), for finding approximate solutions to multiple-goal reinforcement learning problems that are modeled as composite Markov decision processes. According to our formulation different sub-goals are modeled as MDPs that are coupled by the requirement that they share actions. Existing reinforcement learning algorithms address similar problem formulations by fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015